2014

Pliatsikas, C., Johnstone, T., & Marinis, T. (2014): fMRI evidence for the involvement of the procedural memory system in morphological processing of a second language. PLOS ONE. 9(5): e97298 

Click here to access

Abstract

Behavioural evidence suggests that English regular past tense forms are automatically decomposed into their stem and affix (played  = play+ed) based on an implicit linguistic rule, which does not apply to the idiosyncratically formed irregular forms (kept). Additionally, regular, but not irregular inflections, are thought to be processed through the procedural memory system (left inferior frontal gyrus, basal ganglia, cerebellum). It has been suggested that this distinction does not to apply to second language (L2) learners of English; however, this has not been tested at the brain level. This fMRI study used a masked-priming task with regular and irregular prime-target pairs (played-play/kept-keep) to investigate morphological processing in native and highly proficient late L2 English speakers. No between-groups differences were revealed. Compared to irregular pairs, regular pairs activated the pars opercularis, bilateral caudate nucleus and the right cerebellum, which are part of the procedural memory network and have been connected with the processing of morphologically complex forms. Our study is the first to provide evidence for native-like involvement of the procedural memory system in processing of regular past tense by late L2 learners of English.

 

Pliatsikas, C., Johnstone, T., & Marinis, T. (2014): Grey matter volume in the cerebellum is related to processing of grammatical rules in a second language: a structural VBM study. The Cerebellum. 13(1), 55-63

Click here to access

Abstract

The experience of learning and using a second language (L2) has been shown to affect the grey matter (GM) structure of the brain. Importantly, GM density in several cortical and subcortical areas has been shown to be related to performance in L2 tasks. Here we show that bilingualism can lead to increased GM volume in the cerebellum, a structure that has been related to the processing of grammatical rules. Additionally, the cerebellar GM volume of highly proficient L2 speakers is correlated to their performance in a task tapping on grammatical processing in a L2, demonstrating the importance of the cerebellum for the establishment and use of grammatical rules in a L2.

Pliatsikas, C., Wheeldon, L., Lahiri, A., & Hansen, P.C. (2014): Processing of zero-derived words in English: An fMRI investigation. Neuropsychologia. 53, 47-53 

Click here to access

Abstract

Derivational morphological processes allow us to create new words (e.g. punish (V) to noun (N) punishment) from base forms. The number of steps from the basic units to derived words often varies (e.g., nationality<national<nation: two-steps) and there is evidence that complex derivations cause more brain activity than simple ones ( Meinzer, Lahiri, Flaisch, Hannemann, & Eulitz, 2009). However, all studies to date have investigated derivational processes in which morphological complexity is related to a change in surface form. It is therefore unclear whether the effects reported are attributable to underlying morphological complexity or to the processing of multiple surface morphemes. Here we report the first study to investigate morphological processing where derivational steps are not overtly marked (e.g., bridge-N>bridge-V) i.e., zero-derivation ( Aronoff, 1980). We compared the processing of one-step (soaking<soak-V) and two-step (bridging<bridge-V<bridge-N) derivations together with monomorphemic control words (grumble) in an fMRI experiment. Participants were presented with derived forms of words (soaking, bridging) in a lexical decision task. Although the surface derived -ing forms can be contextually participles, gerunds, or even nouns, they are all derived from verbs since the suffix -ing can only be attached to verb roots. Crucially, the verb root is the basic form for the one-step words, whereas for the two-step words the verb root is zero derived from a basic noun. Significantly increased brain activity was observed for complex (one-step and two-step) versus simple (zero-step) forms in regions involved in morphological processing, such as the left inferior frontal gyrus (LIFG). Critically, activation was also more pronounced for two-step compared to one-step forms. Since both types of derived words have the same surface structure, our findings suggest that morphological processing is based on underlying morphological complexity, independent of overt affixation. This study is the first to provide evidence for the processing of zero derivation, and demonstrates that morphological processing cannot be reduced to surface form-based segmentation.

Connally, E., Ward, D., Pliatsikas, C. & Watkins, K. (2014): Pivotal disruption? Abnormal activity in motor control regions in stuttering. St Anne’s Academic Reviews, 5, 31-48

Click here to access

Advertisements